A generalized regularized phase tracker for demodulation of a single fringe pattern.

نویسندگان

  • Li Kai
  • Qian Kemao
چکیده

The regularized phase tracker (RPT) is one of the most powerful approaches for demodulation of a single fringe pattern. However, two disadvantages limit the applications of the RPT in practice. One is the necessity of a normalized fringe pattern as input and the other is the sensitivity to critical points. To overcome these two disadvantages, a generalized regularized phase tracker (GRPT) is presented. The GRPT is characterized by two novel improvements. First, a general local fringe model that includes a linear background, a linear modulation and a quadratic phase is adopted in the proposed enhanced cost function. Second, the number of iterations in the optimization process is proposed as a comprehensive measure of fringe quality and used to guide the demodulation path. With these two improvements, the GRPT can directly demodulate a single fringe pattern without any pre-processing and post-processing and successfully get rid of the problem of the sensitivity to critical points. Simulation and experimental results are presented to demonstrate the effectiveness and robustness of the GRPT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast half-quadratic regularized phase tracking for nonnormalized fringe patterns.

Although one of the simplest and powerful approaches for the demodulation of a single fringe pattern with closed fringes is the regularized phase-tracking (RPT) technique, this technique has two important drawbacks: its sensibility at the fringe-pattern modulation and the time employed in the estimation. We present modifications to the RPT technique that consist of the inclusion of a rough esti...

متن کامل

Regularized Quadrature and Phase Tracking (rqpt) from a Single Closed- Fringe Interferogram

A new sequential phase demodulator based on a Regularized Quadrature and Phase Tracking system (RQPT) is applied to demodulate two-dimensional fringe patterns. This RQPT system tracks the fringe pattern’s quadrature and phase in a sequential way following the path of the fringes. To make the RQPT system more robust to noise the modulating phase around a small neighborhood is modeled as a plane ...

متن کامل

Path independent demodulation method for single image interferograms with closed fringes within the function space C(2).

In the last few years, works have been published about demodulating Single Fringe Pattern Images (SFPI) with closed fringes. The two best known methods are the regularized phase tracker (RPT), and the two-dimensional Hilbert Transform method (2D-HT). In both cases, the demodulation success depends strongly on the path followed to obtain the expected estimation. Therefore, both RPT and 2D-HT are...

متن کامل

Windowed Fourier transform for fringe pattern analysis: addendum.

Novel approaches based on windowed Fourier transform for demodulation of fringe patterns were previously presented [Appl. Opt. 43, 2695-2702 (2004)], where extraction of phase and phase derivatives from either phase-shifted fringe patterns or a single-carrier fringe pattern was the main focus. I show that the same methods can be applied to process a single closed-fringe pattern in either noise ...

متن کامل

N-dimensional regularized fringe direction-estimator.

It has been demonstrated that the vectorial fringe-direction field is very important to demodulate fringe patterns without a dominant (or carrier) frequency. Unfortunately, the computation of this direction-filed is by far the most difficult task in the full interferogram phase-demodulation process. In this paper we present an algorithm to estimate this fringe-direction vector-field of a single...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2012